F. BATTERY CHANGE

1. **Main Unit Battery Power**

 - **Battery Life:**
 - **Main Unit:** 3 years
 - **Sensor Unit:** 2 years

 - **Maintenance:**
 - Check the battery status regularly. Replace the battery when the LED display turns red.

2. **Precautions**

 - a. The computer produces almost no cross-talking interference when 2 bicycles carrying the same or similar wireless cycle computers are ridden side by side, as long as the cross-distance is over 40cm (15.8"").
 - b. The computer has excellent noise immunity to some forms of electromagnetic interference, but it may be affected by strong electromagnetic waves which will cause the main unit to display erroneous data while it is near the source of strong interference, such as TV transmission stations, radar stations, and some heavy industrial machines.

 1. **2. Changing the Sensor (Transmitter) Battery**

 - a. The patent-pending transmitter circuit is designed to reduce power consumption; a 1.5V battery (typically an LR44) can operate for over 24,000km (15,000 miles) riding distance or 2 years.
 - b. Replace the battery when the transmitter's battery power is nearly exhausted, otherwise the transmitter power of the wheel signal will be weak, causing the main unit to display unstable data.
 - c. Replace with a new LR44 battery with the positive (+) pole toward the sensor (Fig. K).

 2. **C. Wireless System Performance**

 - a. The sensor transmits the rotating wheel signal to the receiver in the main unit by wireless transmission. To protect the receiver from interference from other wireless noises - causing the main unit to display false data, install the transmitter according to the following key points to improve performance.
 - b. The receiver is designed to receive a signal from only a certain direction and angle to reduce the noise interference from other sources. Adjust the installation angle of the transmitter to aim in the direction of the main unit within a ±15°. The best performance is when the transmitter is located as close to the main unit as possible and within 45cm (1.5 feet).
 - c. The receiver will receive a stronger wireless signal if the transmitter is closer to the receiver. A stronger sensing signal not only has better noise immunity, but also increases the transmitter battery's operating life. For good wireless performance, please install the transmitter as close to the main unit as possible and within 45cm (1.5 feet).

 3. **Battery Change**

 - a. Install the sensor as close to the main unit as possible and no more than 45cm (1.5 feet) to improve wireless performance.
 - b. The computer will function with the sensor arrow pointed down (Fig. H), but by pointing the arrows up the performance will be improved by reducing the transmitting distance.
 - c. Refer to the TEST section to test the installation before tightening the sensor band.

 4. **TEST**

 - a. Install the main unit in a "On/Off Detecting Switch" (patents pending) to turn ON/OFF the power of the wireless receiver. It can receive the wireless wheel signals only after the main unit is installed onto the bracket.
 - b. Spin the front wheel to check if installation is correct. Correct installation is when the main unit is installed onto the bracket.
 - c. Install the sensor as close to the main unit as possible and no more than 45cm (1.5 feet).
1. Hold down the MODE button for more than 2 seconds to change to 12H/AM, 12H/PM or 24H. Hold down the MODE button to select 12HAM, 12HPM or 24H. Hold down the MODE button for more than 2 seconds to change to the clock setting screen.

2. When riding is stopped, the speed will continue to be calculated for 4 seconds to display the maximum speed.

3. Check relative position and gap of sensor, magnet and main unit periodically. Don’t disassemble the main unit or its accessories.

4. If the battery is dead, refer to the “MAIN UNIT SETUP” and initiate the battery charging process. Place main unit in the shade to return to normal operation. Replace the battery if the red LED is not lit or if the battery labeling information is not displayed when the unit is turned on. No adverse effect on data.

5. Press the MODE button to change to one of the following modes:
 a. Change to ODOMETER setting screen.
 b. Change to auto sleep setting.
 c. Change to data setting.

6. Press the SET button to store the desired data and complete the current setting.

7. FUNCTIONS AND SPECIFICATIONS
 CURRENT SPEED
 - The current speed is always displayed on the upper display when riding. It displays current speed up to 199.9 km/h or 120.0 mph for wheels diameters over 26 inches.

 AVERAGE SPEED
 - When riding is stopped, the speed will continue to be calculated for 4 seconds to confirm that the bicycle has come to a complete stop.

 ODOMETER
 - The odometer calculates the total distance traveled since the last RESET.
 - The ODOMETER function accumulates the total distance traveled since the last RESET.

 DST: Trip Distance
 - The DST function calculates the distance traveled in a given day. The data is cleared at 12:00 AM (00:00) automatically.

 MAXIMUM SPEED
 - Displays the highest speed since the last RESET operation.

 SPEED PACER
 - It flashes the “ ” speed pacer arrow while the current speed is higher than the average speed, and the down arrow “ ” flashes conversely.

 PRECAUTIONS
 - Do not leave the main unit exposed to direct sunlight when not riding the bike.
 - Don’t disassemble the main unit or its accessories.
 - Check the position of the sensor and magnet and main unit periodically.
 - Do not use thinner, alcohol or benzene to clean the main unit or its accessories when they become dirty.
 - Remember to pay attention to the road while riding.